天天干天天操天天爱-天天干天天操天天操-天天干天天操天天插-天天干天天操天天干-天天干天天操天天摸

課程目錄:Machine Learning – Data science培訓
4401 人關注
(78637/99817)
課程大綱:

    Machine Learning – Data science培訓

 

 

 

Machine Learning introduction
Types of Machine learning – supervised vs unsupervised learning
From Statistical learning to Machine learning
The Data Mining workflow:
Business understanding
Data Understanding
Data preparation
Modelling
Evaluation
Deployment
Machine learning algorithms
Choosing appropriate algorithm to the problem
Overfitting and bias-variance tradeoff in ML
ML libraries and programming languages
Why use a programming language
Choosing between R and Python
Python crash course
Python resources
Python Libraries for Machine learning
Jupyter notebooks and interactive coding
Testing ML algorithms
Generalization and overfitting
Avoiding overfitting
Holdout method
Cross-Validation
Bootstrapping
Evaluating numerical predictions
Measures of accuracy: ME, MSE, RMSE, MAPE
Parameter and prediction stability
Evaluating classification algorithms
Accuracy and its problems
The confusion matrix
Unbalanced classes problem
Visualizing model performance
Profit curve
ROC curve
Lift curve
Model selection
Model tuning – grid search strategies
Examples in Python
Data preparation
Data import and storage
Understand the data – basic explorations
Data manipulations with pandas library
Data transformations – Data wrangling
Exploratory analysis
Missing observations – detection and solutions
Outliers – detection and strategies
Standarization, normalization, binarization
Qualitative data recoding
Examples in Python
Classification
Binary vs multiclass classification
Classification via mathematical functions
Linear discriminant functions
Quadratic discriminant functions
Logistic regression and probability approach
k-nearest neighbors
Na?ve Bayes
Decision trees
CART
Bagging
Random Forests
Boosting
Xgboost
Support Vector Machines and kernels
Maximal Margin Classifier
Support Vector Machine
Ensemble learning
Examples in Python
Regression and numerical prediction
Least squares estimation
Variables selection techniques
Regularization and stability- L1, L2
Nonlinearities and generalized least squares
Polynomial regression
Regression splines
Regression trees
Examples in Python
Unsupervised learning
Clustering
Centroid-based clustering – k-means, k-medoids, PAM, CLARA
Hierarchical clustering – Diana, Agnes
Model-based clustering - EM
Self organising maps
Clusters evaluation and assessment
Dimensionality reduction
Principal component analysis and factor analysis
Singular value decomposition
Multidimensional Scaling
Examples in Python
Text mining
Preprocessing data
The bag-of-words model
Stemming and lemmization
Analyzing word frequencies
Sentiment analysis
Creating word clouds
Examples in Python
Recommendations engines and collaborative filtering
Recommendation data
User-based collaborative filtering
Item-based collaborative filtering
Examples in Python
Association pattern mining
Frequent itemsets algorithm
Market basket analysis
Examples in Python
Outlier Analysis
Extreme value analysis
Distance-based outlier detection
Density-based methods
High-dimensional outlier detection
Examples in Python
Machine Learning case study
Business problem understanding
Data preprocessing
Algorithm selection and tuning
Evaluation of findings
Deployment

主站蜘蛛池模板: 杨幂国产精品福利在线观看 | 视频一区免费 | 中国女人a毛片免费全部播放 | 日韩亚洲国产综合久久久 | 国产欧美日韩综合精品一区二区 | 综合亚洲一区二区三区 | 亚洲一区免费在线 | 精品视频午夜一区二区 | 4k岛国精品午夜高清在线观看 | 看一级特黄a大片国产 | 国产精品天天看天天爽 | 可以直接看的毛片 | 亚洲香蕉在线观看 | 久久99精品久久久久久青青91 | 久青草视频97国内免费影视 | 毛片大全高清免费 | 99综合久久| 亚洲精品不卡午夜精品 | 国产一级一片免费播放刺激 | 黄色网址哪里有 | 亚洲人成网国产最新在线 | 1a级毛片免费观看 | 国产黄页在线观看 | 一级国产视频 | 国产中文久久精品 | 国产女人成人精品视频 | 最新国产网站 | 中国黄色网址 | 闫盼盼福利 | 国产成人午夜福在线观看 | 高清成年美女xx免费网站黄 | 久久久久欧美国产精品 | 黄色一级视频免费 | 精品国产毛片 | 国产一级特黄毛片 | 黄色的网站免费观看 | 日本亚洲精品久久 | 国产精品视频播放 | 免费看国产黄色片 | 在线观看免费网址大全 | 天天影视色香欲综合网天天录日日录 |