天天干天天操天天爱-天天干天天操天天操-天天干天天操天天插-天天干天天操天天干-天天干天天操天天摸

課程目錄:Natural Language Processing - AI/Robotics培訓
4401 人關注
(78637/99817)
課程大綱:

    Natural Language Processing - AI/Robotics培訓

 

 

 

Detailed training outline

Introduction to NLP
Understanding NLP
NLP Frameworks
Commercial applications of NLP
Scraping data from the web
Working with various APIs to retrieve text data
Working and storing text corpora saving content and relevant metadata
Advantages of using Python and NLTK crash course
Practical Understanding of a Corpus and Dataset
Why do we need a corpus?
Corpus Analysis
Types of data attributes
Different file formats for corpora
Preparing a dataset for NLP applications
Understanding the Structure of a Sentences
Components of NLP
Natural language understanding
Morphological analysis - stem, word, token, speech tags
Syntactic analysis
Semantic analysis
Handling ambigiuty
Text data preprocessing
Corpus- raw text
Sentence tokenization
Stemming for raw text
Lemmization of raw text
Stop word removal
Corpus-raw sentences
Word tokenization
Word lemmatization
Working with Term-Document/Document-Term matrices
Text tokenization into n-grams and sentences
Practical and customized preprocessing
Analyzing Text data
Basic feature of NLP
Parsers and parsing
POS tagging and taggers
Name entity recognition
N-grams
Bag of words
Statistical features of NLP
Concepts of Linear algebra for NLP
Probabilistic theory for NLP
TF-IDF
Vectorization
Encoders and Decoders
Normalization
Probabilistic Models
Advanced feature engineering and NLP
Basics of word2vec
Components of word2vec model
Logic of the word2vec model
Extension of the word2vec concept
Application of word2vec model
Case study: Application of bag of words: automatic text summarization using simplified and true Luhn's algorithms
Document Clustering, Classification and Topic Modeling
Document clustering and pattern mining (hierarchical clustering, k-means, clustering, etc.)
Comparing and classifying documents using TFIDF, Jaccard and cosine distance measures
Document classifcication using Na?ve Bayes and Maximum Entropy
Identifying Important Text Elements
Reducing dimensionality: Principal Component Analysis, Singular Value Decomposition non-negative matrix factorization
Topic modeling and information retrieval using Latent Semantic Analysis
Entity Extraction, Sentiment Analysis and Advanced Topic Modeling
Positive vs. negative: degree of sentiment
Item Response Theory
Part of speech tagging and its application: finding people, places and organizations mentioned in text
Advanced topic modeling: Latent Dirichlet Allocation
Case studies
Mining unstructured user reviews
Sentiment classification and visualization of Product Review Data
Mining search logs for usage patterns
Text classification
Topic modelling

主站蜘蛛池模板: 国产精品v欧美精品v日韩 | 亚洲精品永久www嫩草 | 黄色片网址 | 美国特黄特色的免费大片 | 色综合久久亚洲国产日韩 | 99av在线| 青青操网 | 日本黄色大片在线观看 | 毛片免费网站 | 国产成人爱情动作片在线观看 | 久久精品国产99久久72 | 国产簧片| 日韩第九页| 亚洲人成网站在线观看青青 | 真人一级毛片免费完整视 | 国产精品久久99 | 欧美日韩在线成人看片a | 哪里可以看免费毛片 | 国产黄色一级网站 | 亚洲欧美手机在线观看 | 日本久操 | 日韩免费毛片视频 | 精品久久久久久国产91 | 亚洲免费在线观看视频 | 91精品国产91久久久久久 | 久久久青草青青亚洲国产免观 | 高h辣肉各种姿势爽文bl | 日本精品久久久久中文字幕 1 | 香蕉福利 | 亚洲第一页在线 | 国产一区二区三区手机在线观看 | 久久精品视频一区二区三区 | 边吃奶边弄进去男女视频 | 在线观看国产wwwa级羞羞视频 | 九九免费精品视频 | 特黄a级毛片 | 国产啪精品视频网给免丝袜 | 亚洲精品久久久久久中文字幕小说 | 亚洲精品亚洲人成在线麻豆 | 国产亚洲精品aa在线观看 | 久久91精品国产91久久小草 |